USN 10MTP11

First Semester M.Tech. Degree Examination, December 2012 Applied Mathematics

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Convert (58)₁₀ to the corresponding binary number. (06 Marks)
 - b. Find the solution of the system of equations using Cramer's rule.

$$x_1 + 2x_2 - x_3 = 2$$
, $3x_1 + 6x_2 + x_3 = 1$, $3x_1 + 3x_2 + 2x_3 = 3$. (07 Marks)

c. Solve the system of equations:

$$10x_1 - x_2 + 2x_3 = 4$$

$$x_1 + 10x_2 - x_3 = 3$$

$$2x_1 + 3x_2 + 20x_3 = 7$$
 using Gauss elimination method.

(07 Marks)

2 a. Find the inverse of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ 4 & 3 & -1 \\ 3 & 2 & 2 \end{bmatrix}$ using Gauss Jordan elimination method.

(10 Marks)

b. Find the solution of the following set of complex equations:

$$\begin{bmatrix} 2+i & 1-4i \\ 4+2i & 5+3i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3+2i \\ 2-2i \end{bmatrix}$$
 (10 Marks)

3 a. Using the Jacobi method find all the eigen values and eigen vectors of the matrix.

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$
 (10 Marks)

b. Find the numerically largest eigen value and the corresponding eigen vector of the matrix

$$\mathbf{A} = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$$

using power method taking initial vectors as $[1, 0, 0]^T$.

(10 Marks)

4 a. Given:

х	1	1.2	1.4	1.6	1.8	2.0
у	2.72	3.32	4.06	4.96	6.05	7.39

find y^1 and y^{11} at x = 1.2. (10 Marks)

b. If f is a function of x and y, find the finite difference approximations to the partial derivatives $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ and evaluate these for $f(x, y) = 2x^4y^3$ at x = 1, y = 1 with

$$\Delta x = \Delta y = 0.1 \tag{10 Marks}$$